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Outline
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Response time (RT) as a dependent measure

Problems with conventional analysis of mean RT

Probability functions for representing RT distributions:

® ex-Gaussian
¢ Shifted Wald

How to fit probability functions to RT data:

® conceptual overview
® RT-Distrib-Fit program for MATLAB

Application example

Caveats regarding interpretation of distribution parameters
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Response Times (RT)

New Tricks

Response time (RT) is a popular dependent measure in
cognitive psychology

Response

Time (RT) e | ong history and rich tradition (e.g., Donders, 1868; Luce,
1986; Ratcliff, 1978; Sternberg, 1969; Wundt, 1880)

e Spawned several sophisticated sequential sampling models
of choice RT (e.g., Ratcliff, 1978; Brown & Heathcote, 2005,
2008; Logan et al., 2014; Usher & McClelland, 2001)

¢ Detailed analyses of empirical RTs provide powerful
constraints for choosing between cognitive models (Farrell &
Lewandowsky, 2004; Hurlstone & Hitch, 2015, 2018)
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Mean RT (M)
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.t
In empirical studies of RT, mean RT, Mgy, is the dominant
measure of performance

Response

Time (RT) e Faster Mgy in condition A than condition B implies more
efficient cognitive processing in condition A

e Thus, Mgy is a measure of performance—lower Mgy implies
better performance

* However, some researchers have abandoned this approach
in favour of more detailed distributional analyses

¢ Motivated by many problems associated with analysis of Mgy
(e.g., Heathcote et al., 1991)
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Problems With Myzr: Skewed Data
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Problems With
Mean RT

1000 1500 2000 2500
Response Time (ms)

m.hurlstone@lancaster.ac.uk New Tricks



Problems With Myzr: Skewed Data
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Two possible implications of skewed data (Heathcote et al.,
1991):

© the cognitive process of interest yields skewed data

Morems With ® the cognitive process of interest yields symmetrical
data—skew reflects nuisance variables

If (1) is true, then an analysis of distribution shape, not Mgr,
is required

If (2) is true, then nuisance scores must be removed

Most researchers assume (2) is true and trim or transform
their data
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Problems With Mzr
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Problems With 0 Data trlmmlng

Mean RT .
® Data transformation
©® Data representation
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Problems With Mzy: Data Trimming
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Addressing skew by trimming data to eliminate extreme
(presumed to be nuisance) values

® removing trials with an RT above a fixed value

TN, ® removing trials with an RT more than a fixed number of
Mean RT standard deviations (typically 2.5) from the mean

e Creates a distribution closer to normal

¢ |t is reasonable to trim post-error trials and when a
participant is known to have been distracted

e But trimming on basis of a trial’s value is a brutal response to
managing skew that “risks throwing the baby out with the
bath water” (Heathcote et al., 1991, p.341)
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Mean RT .
® Data transformation
©® Data representation
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Problems With My;: Data Transformation
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Addressing skew using a data transformation (e.g., logarithm
of RT)

¢ Normalises the distribution by discounting extreme
(presumed to be nuisance) values

Problems With
M RT . . . .
o ¢ |f skew is produced by a nuisance process, discounting must

be done in proportion to the N data points produced by that
process

¢ Failure to do so means rescaled data may misrepresent the
cognitive process of interest

e Transformations are misleading and discard valuable
information
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® Data transformation
©® Data representation
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® Data transformation
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Problems With My;: Data Representation
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When a distribution is skewed, the mean misrepresents
central tendency—it gives extreme values too much weight

FORRE—. * A partial solution is to use median RT instead
Mean RT
= e But when data are skewed, the mean, median, and mode do

not converge—the concept of central tendency is ambiguous

¢ Central tendency is only meaningful for symmetrical
distributions

The analysis of means is misleading
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Statistical Models
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The analysis of entire distributions of RT solves the problems
with Mgt

e Preserves all information and provides clear description of
behaviour

Statistical

Models ¢ Avoids mischaracterising central tendency

e Can detect changes across manipulations not possible with
Mgr (€.9., an increase in skew or a shift in the distribution)

But we need a statistical model to describe the distribution
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Statistical Models
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e The two statistical models that have proved most
popular are:
Statistical @ ex-Gaussian

Models
® Shifted Wald
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ex-Gaussian

New Tricks

Convolution of a Gaussian and an exponential distribution

Three parameters:

* 1 and o, the mean and standard deviation of the
Gaussian component

® 7, the mean of the exponential component

ex-Gaussian

Roughly, 1 and o reflect the leading edge of the distribution

7 reflects the upper tail

Has a positively skewed unimodal shape

Provides excellent fit to RT distributions
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ex-Gaussian
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Default

A Parameter Set B Increasing # C Increasing o D Increasing ¢
254 25 254 25
20+ 204 204 204
— 154 — 154 — 154 — 154
S = 3 S
= 10 = 104 = 104 = 104
054 0.5+ 0.5 0.5+
ex-Gaussian
0.0 0.0 4 0.0 4 0.0 4
T T T T T T T T T T T T T T T T T T T T
o 1 2 3 4 0 1 2 3 4 o 1 2 3 4 o 1 2 3 4
x X X X

Taken from Matzke & Wagenmakers (2009)
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ex-Gaussian
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¢ The probability density function (henceforth, ‘PDF’) of
the ex-Gaussian is given by:

o) = e (£ 2 - 2o (AT

T 272 T o

e where @ is the cumulative density of the Gaussian
component
¢ |ts mean and variance are:

Ex)=p+T1 (2)
and

Var(x) = 0% + 72
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ex-Gaussian
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Hohle (1965) proposed the ex-Gaussian reflects the duration
of two successive components of cognitive processing

e Gaussian component reflects “the time required for
organization and execution of the motor response”
(transduction component)

- ¢ Exponential component reflects “the decision and perceptual
portion of an RT” (decision component)

e This interpretation has been challenged repeatedly (see e.g.,
Luce, 1965; Matzke & Wagenmakers, 2009; McGill &
Gibbon, 1965)
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ex-Gaussian
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The ex-Gaussian does not have a plausible theoretical

rationale

e The Gaussian component assigns positive probabilities
to negative RTs

e |t does not correspond to a plausible cognitive process

model

e “Although the ex-Gaussian model describes RT data
successfully, it does so without the benefit of an
underlying theory” (Heathcote et al., 1991, p.346)
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e The two statistical models that have proved most
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e The two statistical models that have proved most
popular are:

© ex-Gaussian
ex-Gaussian 9 Shifted Wald
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Shifted Wald

New Tricks

® The Wald (1947) distribution is the finishing time distribution
of a Wiener diffusion process towards a boundary

Wald distribution

Response

ex-Gaussian /

0 Time —»

Taken from Matzke & Wagenmakers (2009)
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Shifted Wald
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The Wald distribution has two parameters:
* ~, reflecting the drift rate of the diffusion process

* o, reflecting the separation between the diffusion
starting point and boundary

In the RT context, a third parameter, 6 is included that shifts
Srifed Vg the location of the distribution

* Has a positively skewed unimodal shape

Provides excellent fit to RT distributions
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Shifted Wald
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Default

A Parameter Set B Increasing a C Increasing 6 D Increasing y
4 4 4 4
34 3 39 34

S 2 S 24 E 24 E 24

Shifted Wald 0 1 2 3 4 0o 1 2 3 4 (U 2 3 4 o 1 2 3 4

Taken from Matzke & Wagenmakers (2009)
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Shifted Wald
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* The PDF of the shifted Wald is given by:

f(xla,0,7) = %(‘1_9)3 (4)
_ _ 2
ewp (2200,
Shifea Wald e where x > 0, its mean and variance are:
E(x)=0+a/y (5)

and

Var(x) = o/’
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Shifted Wald
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Shifted Wald has a cognitive interpretation

People accumulate noisy information from the environment
until a threshold amount is reached and a response initiated

Drift rate ~ reflects task difficulty or participant ability

Shifted Wald

Response criterion « reflects response caution

Shift parameter 6 reflects nondecision time
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Fitting the ex-Gaussian and Shifted Wald to RT
Distributions
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Next ...

¢ Guide to how to fit probability functions to RT
distributions

e RT-Ditrib-FIT: a MATLAB toolbox for fitting the
ex-Gaussian and shifted Wald

e https://github.com/mark-hurlstone/RT-Distrib-Fit
* R toolbox forthcoming

Fitting

m.hurlstone@lancaster.ac.uk New Tricks


https://github.com/mark-hurlstone/RT-Distrib-Fit

Fitting the ex-Gaussian and Shifted Wald to RT
Distributions

New Tricks

¢ Fitting probability functions to RT distributions requires
at least three functions:

© functions implementing the ex-Gaussian PDF and
shifted Wald PDF

® a function implementing the computation of the

objective function
Fitting

® a search algorithm to find best-fitting parameter values
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Fitting the ex-Gaussian and Shifted Wald to RT
Distributions
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¢ Fitting probability functions to RT distributions requires
at least three functions:

@ functions implementing the ex-Gaussian PDF and
shifted Wald PDF

® a function implementing the computation of the
objective function

® a search algorithm to find best-fitting parameter values
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Distribution Functions
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¢ Functions are required for implementing the
ex-Gaussian (equation 1), and shifted Wald (equation
4) PDFs
e RT-Ditrib-Fit contains two PDF functions:
* f = exGaussPdf(parms,x)

* f = shiftWaldPdf(parms,x)
e where f returns the PDF of the relevant distribution,

parms is a vector of distribution paramater values
(7,p,0 | a,0,7), and x is a data vector of empirical RTs
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Fitting the ex-Gaussian and Shifted Wald to RT
Distributions
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¢ Fitting probability functions to RT distributions requires
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@ functions implementing the ex-Gaussian PDF and
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Fitting the ex-Gaussian and Shifted Wald to RT
Distributions
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¢ Fitting probability functions to RT distributions requires
at least three functions:

© functions implementing the ex-Gaussian PDF and
shifted Wald PDF

@® a function implementing the computation of the
objective function

® a search algorithm to find best-fitting parameter values
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Objective Function
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® An objective function is required that returns the
goodness-of-fit of the theoretical PDF— given the supplied
parameters—to the empirical data

e Several possibilities:

¢ chi-square goodness-of-fit (Smith, 1995)

e continuous maximum likelihood (Heathcote, 1991)

e quantile maximum probability (Brown & Heathcote,
2003)

Objective Function

e RT-Distrib-Fit uses continuous maximum likelihood
estimation
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Likelihood Function
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e Given a PDF f(x|#) with k parameters, 6 = [0},0,,...,0¢]
and a set of data containing N observations, x;, i = 1,...,
N, the likelihood function is:

N

L(O]x) = [ [ £(xil6), (7)

i=1

e where [] is the product operator

e Problem: can return values close to zero producing
overflow errors
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Log-Likelihood Function
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Overflow errors can be avoided by using the log of the
likelihood

e Substitutes the sum operator with the product operator,
which is less likely to produce overflow errors:

nL(0x) = Zln (xi0) ], (8)

e where In is the natural logarithm

e Search algorithms (next) typically use minimisation
procedures, so it is customary to minimise the negative
log-likelihood instead of maximising the log-likelihood
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Log-Likelihood Function
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¢ RT-Distrib-Fit computes the log-likelihood via the
function, InL = logMaxLikelihood(parms)

¢ Nested within the function wrapperLoopFmin,
described next
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Search Algorithm
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A search algorithm is needed that systematically adjusts the
parameters of the to-be-fitted probability distribution to
minimise the objective function (maximise the log-likelihood)

¢ The SIMPLEX algorithm (Nelder & Mead, 1965) is a robust
and widely used parameter estimation method

¢ Invoked in MATLAB using the inbuilt fminsearch function
(invoked via the optim function in R)

e RT-Distrib-Fit uses the function fminSearchBnd—version of
S . SIMPLEX with reflection boundaries for to-be-estimated
parameters
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Search Algorithm

Search Algorithm

SIMPLEX algorithm requires starting parameter values to
initiate the search

® The closer these starting points are to the true parameter
values, the better the performance of SIMPLEX

¢ Heuristic starting points are available for the ex-Gaussian
(Lacouture & Cousineau, 2008)

e Sensible starting parameters can also be found for the
shifted Wald (Heathcote, 2004)

¢ To avoid local minima problems, it is imperative that the
search is conducted with multiple starting parameter values
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Search Algorithm
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RT-Distrib-Fit contains a function that generates starting
parameter values and reflection boundaries for parameters

e [startVeci,startVec2,startVec3,|B,uB] = ...
genStartingParameters(data,chooseDistrib)

e where data is a data vector of empirical RTs and
chooseDistrib is the distribution being fitted (0 =
ex-Gaussian, 1 = shifted Wald)

e startveci, startVec2, and startVec3 are vectors of starting

parameter values (7,u,0 | @,0,7), and IB and UB are vectors
of lower and upper boundaries on parameter values (7,u,o |
a,0,7)

Search Algorithm
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Search Algorithm
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Yields three starting values for each distribution parameter

e Starting values and reflection boundaries are input
arguments to another function wrapperLoopFmin

® bestX = wrapper-
LoopFmin(parms,data,startVec1,startVec2,startVec3,|B,uB,
chooseDistrib)

e Runs SIMPLEX with 27 different starting parameter
combinations

ST * Returns bestX, a vector of the best-fitting parameter
estimates (7,u,0 | a,0,7)
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Using RT-Distrib-Fit
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A front-end script, rtDistribFitScript, controls the fitting

¢ To-be-fitted data should be stored as text files in the
RT-Distrib-Fit MATLAB directory

e Naming convention: Participant_1.txt, Participant_2.txt,
Participant_3.txt ...

e Each row represents an RT, each column represents a
condition

¢ Choose what distribution you want to fit by setting the

, parameter chooseDistrib (0 = exGaussian, 1 = shifted

RT Disro-Fi Wald) then hit F5 to run
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Using RT-Distrib-Fit
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Using
RT-Distrib-Fit

© Retrieves data for participant p and condition ¢

® Sort’s the data and removes any missing values (coded as
NaN in data files)

® Generates starting parameter values based on the
participant’s data

@ Fits the data using 27 different starting points

@® Records best-fitting parameters, InL, x?, and KS tests of data
RT distributions

@ lterate until all participant data has been fit

@ z-Transform participant RTs, rescale, then fit group
distribution (see Rouder, 2014; cf. Vincent averaging)

® Results written to text files (last row is group fit)
©® Generate histogram plots with best-fitting PDF overlaid
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Some Considerations
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* You need at least 100 RT observations per condition to
obtain stable maximum likelihood estimates (Heathcote
et al., 1991)

e Ignore fits to individual participants if there are less
than 100 observations each—use group fits instead

e Reminder: these are contained in the final row of the
output files

Using
RT-Distrib-Fit
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Application Example
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Artificial RT data set generated using shifted
log-normal distribution (for lack of simple RT data set)

e Another distribution that provides an excellent fit to
empirical RT distributions (Ratcliff & Murdock, 1976)

¢ 15 artificial participants, 3 treatments, 150 RTs each
e Uniform random sampling of parameters (u, o, and 6)
with different expected values across treatments

¢ Fit ex-Gaussian and shifted Wald to resulting RT
distributions

Application
Example
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Mgy By Treatment
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Response Time (ms)

Application
Example
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PDF Histograms With Fitted ex-Gaussian

Functions
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Tau = 165.62, Mu = 509.74, Sigma = 45.37 Tau = 204.03, Mu = 597.69, Sigma = 56.50

Tau = 136.59, Mu = 513.76, Sigma = 57.10

4 4 4
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3 3 3
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Application
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m.hurlstone@lancaster.ac.uk New Tricks



PDF Histograms With Fitted Shifted Wald

Functions
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Alpha = 37.75, Theta = 342.41, Gamma = 0.11  Alpha = 39.09, Theta = 418.86, Gamma = 0.10

Alpha = 49.34, Theta = 283.61, Gamma = 0.13

4 4 4
35 35 35
3 3 3
25 25 25
2 2 2
g 2 g2 2 2 2
a8 8 8
15 15 15
1 1 1
0.5 0.5 0.5
0 0 [
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Response Time (ms) Response Time (ms) Response Time (ms)

Alpha = 64.51, Theta = 212.31, Gamma = 0.15  Alpha = 45.95, Theta = 290.74, Gamma = 0.12  Alpha = 53.68, Theta = 322.41, Gamma = 0.11

4 4 4
35 35 35
3 3 3
25 25 25
z z z
2 2 2 2 2 2
8 8 8
1.5 1.5 1.5
1 1 1
" . 0.5 0.5 0.5
Application
0 0 0
Example 0 500 1000 1500 2000 0 50 1000 1500 2000 0 50 1000 1500 2000

Response Time (ms)

Response Time (ms)

Response Time (ms)
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Chi-Square Goodness-of-Fits
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Distribution
ex-Gaussian Shifted Wald

Fit Type T, T, T; T T, T;
Individuals 18.76 14.49 27.47 20.99 16.45 21.97
Group 19.55 12.22 30.60 68.88 72.33 99.24

Application
Example
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Summary
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Fits of ex-Gaussian and shifted Wald show the (hypothetical)
manipulation caused an increase in skew of RT distribution,
but not a shift in location

¢ Not discernible from analysis of Mgy

¢ Both ex-Gaussian and shifted Wald provided excellent fits to
individual participant RT distributions

e ex-Gaussian also provided an excellent fit to group data,
whereas shifted Wald performed less well

e Parameter averaging recommended for both distributions
(shifted Wald perhaps more so) where possible (cf. Rouder
& Speckman, 2004)

Application
Example
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How To Report a Distributional Analysis
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e Conventional analysis of Mgy
¢ Distributional analysis:

® KS tests of empirical RT distributions with example
density histograms for one or more participants

® Group density histograms per condition, with best fitting
probability function overlaid

® Table or plot of estimated distribution parameters by
condition

¢ Inferential statistics (e.g., ANOVA) performed on
distribution parameters (for fits to individual participants)

P ¢ See Heathcote et al. (1991) for guidelines and an example

Example
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Caveats
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Should you interpret changes in distribution parameters in
terms of components of cognitive processing?

e Matzke and Wagenmakers (2009) fit the Ratcliff (1978)
diffusion model to ex-Gaussian and shifted Wald probability
distributions

¢ Diffusion model contains parameters that are known to map
onto specific cognitive processes

¢ |f ex-Gaussian and shifted Wald parameters represent
components of cognitive processing, they should relate to
parameters of the diffusion model

Caveats
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Caveats
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¢ Matzke and Wagenmakers (2009) find no one-to-one
mapping of diffusion model parameter estimates with
ex-Gaussian and shifted Wald parameter values

e We conclude that researchers should resist the temptation to
interpret changes in the ex-Gaussian and shifted Wald
parameters in terms of cognitive processes (Matzke &
Wagenmakers, 2009, p.798)

e Use these distributions as descriptive, rather than inferential,
tools

Caveats

m.hurlstone@lancaster.ac.uk New Tricks



New Tricks

m.hur

¢ Thanks for listening!

Caveats
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Recommended Reading and References
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* To be added shortly ...

Caveats
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